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1 Scalar Tensor Theories (STT)

2 Historical overview of solutions for which symmetry has
proven to be of great help.

3 Model with a pure geometric constraint but without a
conformal scalar field action (construction and solutions).

4 Model with a simple scalar field equation (construction and
solutions).

5 Conclusions and Further prospects.
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Scalar Tensor Theories (STT)

1 Scalar tensor theories are one of the simplest modified
gravity theories which extend GR with one (or more) scalar
degrees of freedom.

2 Horndeski theory : The most general (single) scalar-tensor
theory with second order equations of motion =⇒ absence
of Ostrogradski ghosts [G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)].
The action is given by

∫
d4x
√
−g
∑5

i=2 Li where

L2 = K (φ,X ), L3 = −G3(φ,X )2φ,

L4 = G4(φ,X )R + G4,X

[
(2φ)2 − (∇µ∇νφ)2

]
L5 = G5(φ,X )Gµν∇µ∇νφ−

G5,X

6

[
(2φ)3

−3 (2φ) (∇µ∇νφ)2 + 2 (∇µ∇νφ)3
]

where X = −1
2∂µφ∂

µφ and Gi ,X = dGi
dX .
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Black hole solutions

Goal : Find static spherically symmetric black hole solutions
within an Ansatz of the form

ds2 = −N(r)2F (r)dt2+
dr2

F (r)
+r2

(
dθ2 + sin(θ)2dϕ2

)
, φ = φ(r)

or in isotropic coordinates

ds2 = −H(r)dt2+G (r)
[
dr2 + r2

(
dθ2 + sin(θ)2dϕ2

)]
, φ = φ(r)

→ Nonlinearities make difficult to find exact analytic solutions.
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Historical overview of solutions

• Einstein gravity coupled to a massless scalar field

S =

∫
d4x
√
−g
(
R − 1

2
∂µφ∂

µφ

)
G4 = 1, K = X .

→ Most general static solution in isotropic coordinates [B.

Xanthopoulos and T. Zannias, , Phys. Rev. D 40, 2564 (1989).] −→ Naked singularity
(unless the scalar field vanishes) ; this result is covered by the
no-hair theorem [J. E. Chase, Commun. Math. Phys. 19, 276 (1970)].

→ The clue of the derivation 2φ = 0 −→ first integral.
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Historical overview of solutions

• Scalar field nonminimally coupled

S =

∫
d4x
√
−g
(
R − 1

2
∂µφ∂

µφ− ξ

2
Rφ2 − V (φ)

)
• Belongs to Horndeski theory K = X − V (φ) and
G4 = 1− ξ

2φ
2.

→ The parameter ξ measures the strength of the nonminimal
gravitational coupling.
→ Minimal case ξ = 0 and V ′ ≥ 0, no scalar-hair theorem [J. D.

Bekenstein, Phys. Rev. Lett 28, 452 (1972).]
→ No scalar hair theorem for definite positive potential and for
ξ < 0 and ξ ≥ 1

2 [A. E. Mayo and J. D. Bekenstein,, Phys. Rev. D 54, 5059 (1996).]
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Historical overview of solutions

→ For the conformal coupling ξ = 1
6 and V = 0, Bocharova,

Bronnikov and Melnikov found a black hole solution [N. Bocharova, K.

Bronnikov and V. Melnikov, Vest. Moks. Univ. Fiz. Astron. 6, 706 (1970).] and [J. D. Bekenstein, Ann.

Phys 82, 535 (1974).]
• The BBMB solution is

ds2 = −(1− M

r
)2dt2 +

dr2

(1− M
r )2

+ r2dΩ2
2,

φ(r) = ± M

r −M
.

→ The metric is like the extremal Reissner-Nordstrom
→ Scalar field blows up at the horizon rh = M.
→ Uniqueness of the BBMB solution [B. C. Xanthopoulos and T. Zannias, J.

Math. Phys 32, 1875 (1991).]
→ The BBMB has a (very scanty) hair from the dichotomic
parameter ± (due to the discrete symmetry φ→ −φ)
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Historical overview of solutions

• The clue of the derivation and of the uniqueness theorem of
the BBMB solution is the conformal invariance of the matter
source action

SM =

∫
d4x
√
−g
(
−1

2
∂µφ∂

µφ− 1

12
Rφ2

)
→ Conformal transformations : gµν → e2σgµν and φ→ e−σφ
=⇒ SM → SM + b.t.
→ From the conformal invariance, the trace of the matter
stress tensor vanishes Tµ

µ = 0, and from the Einstein equations
Gµν = Tµν =⇒ R = 0 (pure geometric constraint) and
2φ = 1

6Rφ =⇒ 2φ = 0 (first integral).
→ This permits the derivation of the most general static
spherically symmetric asymptotically flat solution (BBMB) [B. C.

Xanthopoulos and T. Zannias, J. Math. Phys 32, 1875 (1991).].
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Historical overview of solutions

• Einstein conformal scalar field equations in arbitrary
dimension D

SM =

∫
dDx
√
−g
(
−1

2
∂µφ∂

µφ− ξD
2
Rφ2

)
, ξD =

(D − 2)

4(D − 1)

→ Conformal transformations : gµν → e2σgµν and φ→ e
2−D

2
σφ

=⇒ SM → SM + b.t.
→ From the conformal invariance, and from the Einstein
equations Gµν = Tµν =⇒ R = 0 (pure geometric constraint)
and 2φ = ξDRφ =⇒ 2φ = 0 (first integral).
→ This permits the derivation of the most general static
spherically symmetric asymptotically flat solution [C. Klimcik, J. Math.

Phys 34, 5 (1993).]. Black hole only in D = 4 (BBMB).
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Historical overview of solutions

• Self-interacting conformal scalar field

S =

∫
d4x
√
−g
(
R − 2Λ− 1

2
∂µφ∂

µφ− 1

12
Rφ2 − αφ4

)
→ Conformal potential V ∝ φ4.
→ A black hole solution with Λ > 0 exists [C. Martinez, R. Troncoso and

J. Zanelli, Phys. Rev. D 67, 024008 (2003).]

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

2, f (r) = −Λ

3
r2 + (1− M

r
)2

φ(r) =
M

r −M

provided that α = −Λ/72.
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Historical overview of solutions

→ From the Einstein equations Gµν + Λgµν = Tµν =⇒ R = 4Λ
(pure geometric constraint) but
2φ = 1

6Rφ+ 4αφ3 =⇒ 2φ 6= 0 (no more a first integral).
→ The uniqueness of the solution is an open problem.

→ From these different examples, one can appreciate that the
solutions can be found analytically in the case where

1 Pure geometric constraint (due to the conformal invariance
of the scalar field action) and which restricts the allowed
possible spacetimes or/and

2 Scalar field equation ”simple” to integrate.

• We will see a model where these two criteria hold but with a
scalar field action that is not conformally invariant.
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Model with a pure geometric constraint and a
”simple” scalar field equation

• Let us generalize the standard conformal action

S =

∫
d4x
√
−g

{
R − 2Λ−6β

(
R

6
φ2 + (∂φ)2

)
− 2λφ4

−α
[

ln(φ)G − 4Gµνφµφν
φ2

− 42φ(∂φ)2

φ3
+

2(∂φ)4

φ4

]}

where G = R2 − 4RµνR
µν + RµναβR

µναβ is the Gauss-Bonnet
density. It belongs to Horndeski theory. Here the
α−contribution breaks the conf. invariance of the matter action
but the scalar field equation is still conformally invariant.
→ Look for a solution within the following ansatz

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

2, φ = φ(r).
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1 Pure geometric constraint R − 4Λ+α
2G = 0 =⇒

f (r) = 1 +
r2

2α

[
1±

√
1 + 4α

(
2M

r3
− q

r4
+

Λ

3

)]
,

where M (mass) and q (kind of charge) are two integration
constants.

2 Scalar field equation ”easy” to integrate (for α 6= 0)(
φ′

φ2

)′(
f
[
(rφ)′

]2 − φ2(1 +
β

2α
r2φ2)

)
= 0

Two disconnected branches of solutions [P. G. S. Fernandes, Phys. Rev.

D 103, 104065, (2021).]
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1 First branch :

λ =
β2

4α
, q = −2α, φ(r) =

√
−2α

β

r
2 Second branch : The scalar field equation

f
[
(rφ)′

]2 − φ2(1 +
β

2α
r2φ2) = 0

by means of the change rφ = Ah(
∫

dr

r
√

f (r)
) becomes a

separable equation dh

h

√
1+A2β

2α
h2

= ±dr

λ =
3β2

4α
, q = 0, φ(r) =

√
−2α

β

r cosh(c ±
∫

dr

r
√

f (r)
)

where the constant c is a sort of hair (consequence of the
conf. invariance of the scalar field equation).
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Generalized or Non-Noetherian conformal scalar
field

• The clue behind the existence of these solutions : Geometric
constraint is due to the conformal symmetry of the scalar field
equation without necessarily having a conformally invariant
matter source action. −→ Generalized [P. G. S. Fernandes, Phys. Rev. D 103,

104065, (2021).] or Non-Noetherian conformal scalar field [E. Ayón-Beato

and M. H, arXiv :2305.09806 [hep-th], (2023).]

→ For convenience, let us work in the ”exp. frame” φ→ eφ.
→ The conformal transformations become gµν → e2σgµν and
φ→ φ− σ or infinitesimally δσgµν = 2σgµν and δσφ = −σ. A
SST with a conformally invariant scalar field equation

δσS =

∫ (
δS

δgµν
δσgµν +

δS

δφ
δσφ

)
=

∫ (
2gµν

δS

δgµν
− δS

δφ

)
︸ ︷︷ ︸
φ−independent

σ
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Generalized or Non-Noetherian conformal scalar
field

→ If the scalar field equation is conformally invariant =⇒

−2gµν
δS

δgµν
+
δS

δφ
= Pure Geometric Equation

→ A scalar quantity I (φ, g) under a conformal transformation
gµν → e2σgµν and φ→ φ− σ becomes

I (φ, g)→ I (φ− σ, e2σg)

Conformal invariance of the scalar quantity (σ = φ)=⇒

I (φ, g) = I (0, g̃), auxiliary metric g̃ = e2φg

Conclusion : The only conf. inv. quantities of STT are purely
geometric quantities built out of the auxiliary metric (δσg̃ = 0).
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In our case
I (0, g̃) = −8λ−2βR̃−αG̃

and, by means of an homotopy calculation =⇒

SM =

∫
d4x
√
−g

{
−2λφ4−6β

(
R

6
φ2 + (∂φ)2

)

−α
[

ln(φ)G − 4Gµνφµφν
φ2

− 42φ(∂φ)2

φ3
+

2(∂φ)4

φ4

]}
• The real challenge is to determine scalar quantities built out of the auxiliary
metric that come from an action principle. In [E. Ayón-Beato and M. H, arXiv :2305.09806

[hep-th], (2023).], we have determined the most general action in four dimensions
that gives rise to a non-Noetherian conformal scalar field satisfying a second-order
equation.
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Model with a ”simple” scalar field equation

A priori forget about the symmetry (conformal or shift) and ask
a similar factorization for the scalar field equation for an ansatz
of the form ds2 = −f (r)dt2 + dr2/f (r) + r2dΩ2

2 and φ = φ(r)
[E. Babichev, C. Charmousis, M. H. and N. Lecoeur, [arXiv :2303.04126 [gr-qc]].]

∫
d4x
√
−g

{
(1 + W (φ))R − 1

2
Vk (φ) (∇φ)2 + Z (φ) + V (φ)G

+V2 (φ)Gµν∇µφ∇νφ+ V3 (φ) (∇φ)4 + V4 (φ)2φ (∇φ)2

}
.

Previous case corresponds

W = −βe2φ, Vk = 12βe2φ, Z = −2λe4φ − 2Λ,

V = −αφ, V2 = 4α = V4, V3 = 2α,
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1 The combination E t
t − E r

r = 0 can be factorized as

[
φ′′

(φ′)2
− 1

][
r2Wφ + 4 (1− f )Vφ + 2frV2φ

′ + fr2V4

(
φ′
)2

]
= 0

provided that the potentials Vk and Vi can be parameterized in terms of
the Einstein-Hilbert and Gauss-Bonnet potentials W and V =⇒ A priori a
three-parametric (parameterized by W , V and Z) class of possible
”integrable” theories.

2 One has to fix the potentials W , V and Z s. t. the two remaining equations
admit the same metric function f (in the case of the first branch).
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For the first branch, the two independent equations, Err = 0 and
Eθθ = 0 can be integrated once and twice respectively to give

Err ∝ I ′1 (r) , Eθθ ∝ I ′′2 (r) ,

with

I1 (r) = f 2
(
r2V

)′′′
−f
(

2r
(

1 +W′
)

+ 4V ′ + r2W′′
)

+2r + 2W + rZ′ − Z,

I2 (r) = f 2 (rV )′′−fr
(

1 +W′
)

+Z,

where W =W ′ and rZ = Z ′′.
The two quadratic equations defining f must be proportional
with a proportional factor 2µ(r).
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Case of µ = 1

For a proportionality factor µ = 1

W = −β4e
2φ−β5e

3φ, Z = −2Λ−2λ4e
4φ−2λ5e

5φ,

V = −α4φ−α5e
φ,

and the resulting action is given by

S =

∫
d4x
√
−g
{
R − 2Λ−2λ4e

4φ−2λ5e
5φ−β4e

2φ
(
R + 6(∇φ)2

)
−β5e

3φ
(
R + 12(∇φ)2

)
−α4

(
φG − 4Gµνφµφν − 4�φ(∇φ)2 − 2(∇φ)4

)
−α5e

φ
(
G − 8Gµνφµφν − 12�φ(∇φ)2 − 12(∇φ)4

)}
,

The resulting action is a linear combination of the four-dimensional non
Noetherian conformal action and a Lagrange density that defines a Noetherian
conformal action in five dimensions.
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Case of µ = 1 : Solutions of the first branch

Now, the theory being fixed let’s use the Eddington Finkelstein
coordinates (for latter convenience)

ds2 = −f (r) du2 − 2dudr +
r2dθ2

1− κθ2
+ r2θ2dy2, φ(r) = ln

(η
r

)
.

where κ = ±1 or κ = 0 and η is a constant.
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Einstein equations

Evaluating the scalar field φ(r) in the Einstein equations Euu ,

Euu ∝
(
α4f 2

r
−
(
r +

β5η
3

2r2
+

2κα5η

r2
+

2α4κ

r

)
f +

1

r2

(
λ5 η

5

2
+
β5 η

3κ

2

)
+

1

r

(
λ4η

4 + β4 κ η
2
)
−

r3Λ

3
+ κr

)′
.

=⇒
α4f 2

r
−
(
r +

β5η
3

2r2
+

2κα5η

r2
+

2α4κ

r

)
f +

1

r2

(
λ5 η

5

2
+
β5 η

3κ

2

)
+

1

r

(
λ4η

4 + β4 κ η
2
)
−

r3Λ

3
+ κr + C1 = 0.

Evaluating the scalar field φ(r) in the Einstein equations Eθθ,

Eθθ ∝
[
α4

r
f 2 −

(
r −

β5η
3

r2
−
β4η

2

r

)
f −

λ5η
5

3r2
−
λ4η

4

r
−

r3Λ

3

]′′
.

=⇒
α4f 2

r
−
(
r −

β5η
3

r2
−
β4η

2

r

)
f −

λ5η
5

3r2
−
λ4η

4

r
−

r3Λ

3
+ C3 r + C2 = 0,

where C1, C2 and C3 are constants of integration.
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Compatibility and Black Hole Solution

α4f 2

r
−
(
r +

β5η
3

2r2
+

2κα5η

r2
+

2α4κ

r

)
f +

1

r2

(
λ5 η

5

2
+
β5 η

3κ

2

)
+

1

r

(
λ4η

4 + β4 κ η
2
)
−

r3Λ

3
+ κr + C1 = 0,

α4f 2

r
−
(
r−

β5η
3

r2
−
β4η

2

r

)
f −

λ5η
5

3r2
−
λ4η

4

r
−

r3Λ

3
+C3 r + C2 = 0,

Compatibility relations for coupling constants

β5η
2 = −

4

3
α5κ, β4η

2 = −2α4κ, λ5 η
2 = −

3

5
β5κ, λ4η

2 = −
1

2
β4κ

C3 = κ, C1 = C2 = −2M.

where M is a constant of integration. We obtain the following metric function

f (r) = κ +
2α5ηκ

3rα4

+
r2

2α4

(
1±

√√√√(1 +
4α5ηκ

3r3

)2

+ 4α4

(
Λ

3
+

2M

r3
+

2α4κ2

r4
+

8α5ηκ2

5r5

))
,



The role of
symmetry for
finding black

holes in
scalar-tensor-

theories

Mokhtar
Hassaine

Particular case κ = 0

For the case κ = 0, the theory is restricted by λ4 = β4 = λ5 = β5 = 0

S =

∫
d4x
√
−g
{
R − 2Λ− α4

(
φG − 4Gµνφµφν − 4�φ(∇φ)2 − 2(∇φ)4

)
− α5e

φ
(
G − 8Gµνφµφν − 12�φ(∇φ)2 − 12(∇φ)4

)}
,

the metric function and scalar field are given by

f (r) =
r2

2α4

(
1±

√
1 + 4α4

(
Λ

3
+

2M

r3

))
φ(r) = ln

(η
r

)
where M and η are constants of integration.
Curiosities :

1 The solution does not depend on the coupling α5 since the T
(α5)
µν associated

to α5 vanishes on-shell (it is a stealth only on this part).

2 The integration constant η does not appear in the metric solution, and this
can be explained by the fact that the α4-part is shift symmetric in φ i. e.
φ→ φ+ cst
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Other Solution

Considering β4 = λ4 = α4 = 0, and through a redefinition of the scalar field

Φ
2
3 = eφ, the theory is given by

S =

∫
d4x
√
−g
{
R − 2Λ− 2λ5Φ

10
3 −

1

2
(∂Φ)2 −

3

32
RΦ2−

− α5

(
G −

32

9

GµνΦµΦν

Φ
4
3

−
32

9

�Φ(∇Φ)2

Φ
7
3

−
64

27

(∇Φ)4

Φ
10
3

)}
.

We obtain the following solution

f (r) =
1

1 + 4α5ηκ
3r3

[
κ−

Λr2

3
−

2M

r
−

4α5ηκ
2

15r3

]
, Φ(r) =

η

r
.

Here ξ = 3
16
< 1

2

0 1
6

3
16

1
2

ξ

No Hair Theorem



The role of
symmetry for
finding black

holes in
scalar-tensor-

theories

Mokhtar
Hassaine

From static to Vaidya-like solutions

Considering the metric function as a function that depends also on the retarded
(advanced) time u,

ds2 = −f (u, r)du2 − 2dudr +
r2dθ2

1− κθ2
+ r2θ2dy2,

φ(r) = ln
(η
r

)
,

where η is fixed by the compatibility conditions and the equation Err is
automatically satisfied.



The role of
symmetry for
finding black

holes in
scalar-tensor-

theories

Mokhtar
Hassaine

Evaluating the scalar field φ(r) and the compatibility conditions in the Einstein
equations Euu one gets,

Euu = ∂r

(
α4f 2

r
−
(
r +

4α5ηκ

3r2
+

2α4κ

r

)
f +

4ηα5κ
2

15r2
−
α4κ

2

+
1

r

(
λ4η

4 + β4 κ η
2
)
−

r3Λ

3
+ κr

)
−

1

f
∂u

(
α4f 2

r
−
(
r +

4α5ηκ

3r2
+

2α4κ

r

)
f

)
.

= (∂r −
1

f (u, r)
∂u)E static(f (u, r)),

Eθθ = ∂rrE
static(f (u, r)),

=⇒ E static(f (u, r)) = C1(u)r + 2M(u),

=⇒ Euu =
C1(u)

r2
−

Ċ1(u)

r f (u, r)
−

2Ṁ(u)

r2 f (u, r)
,

it is easy to see that choosing C1(u) = 0 leads to the generalized Vaidya relation

Eµν := Gµν + Λgµν − Tµν = −
2Ṁ(u)

r2
δuµδ

u
ν ,
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Hence, we have shown that the compatibility conditions can be generalized to
accommodate a time dependence by promoting the constant mass to a function of
the retarded (advanced) time =⇒ As a consequence, the static black hole
solutions can be naturally promoted to Vaidya type solutions with metric

f (u, r) = κ +
2α5ηκ

3rα4

+
r2

2α4

(
1±

√√√√(1 +
4α5ηκ

3r3

)2

+ 4α4

(
Λ

3
+

2M(u)

r3
+

2α4κ2

r4
+

8α5ηκ2

5r5

))

Let us now define

L1(n) =2enφ, L2(n) = e(n−2),φ
[
R + (n − 1)(n − 2)(∇φ)2

]
L3(n) =e(n−4)φ

[
G − 4(n − 3)(n − 4)Gµν∇µφ∇νφ− 2(n − 2)(n − 3)(n − 4)�φ(∇φ)2

−(n − 2)(n − 3)2(n − 4)(∇φ)4
]

where L1(n) (resp. L2(n) and L3(n)) is conformally invariant in any dimension
n ≥ 2 (resp. n ≥ 3 and n ≥ 4).
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General case with µ constant and µ 6= 1

The resulting action for µ constant and µ 6= 1

Sµ6=1 =
1

2

∫
d4x
√
−g

{
α

[
2(µ− 2)c2(µ−3)L1(6− 2µ) + 4c2(µ−2)L2(6− 2µ) +

c2(µ−1)

(µ− 1)
L3(6− 2µ)

]

− γ
[

12

(2µ + 3)c5
L1(5)−

4

c3
L2(5) +

(2µ + 1)

c
L3(5)

]

+ 2(µ− 1)c2(µ−2)L1(4− 2µ) + 2c2(µ−1)L2(4− 2µ)}.

The metric solution is given by

f (u, r) =
1

2µ− 1

[
1 +

γr1−2µ

α
+

r2

2α

(
1±

√
H(r)

)]

with

H(r) =

(
1 +

2γ

r2µ+1

)2

+
4αΛ

3
+

8αM

r2µ+1
+

16αγ(2µ + 1)

(2µ + 3)r2µ+3
−

8α2

(2µ− 3)r4

As in the µ = 1 case, its extension to generalized Vaidya-like solution M → M(u) yields

Eµν := Gµν + Λgµν − Tµν = −
2µ Ṁ(u)

(2µ− 1) r2
δ
u
µδ

u
ν ,
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Conclusions :

1 Quite general Horndeski theories with arbitrary φ−dependent potentials and
without any apparent symmetries which admit interesting and explicit black
hole solutions.

2 The resulting action turns out to have a conformal origin (non-Noetherian in
four dimension and Noetherian in five dimensions). Understand this origin.

3 Linear and quadratic black hole solutions which can be promoted to
generalized Vaidya-like configurations M → M(u).

4 We have completely specified the solutions for a constant factor of
proportionality. What is for µ 6= cst (for example the BBMB solution
corresponds to µ 6= cst).


