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theory with second order equations of motion = absence
of Ostrogradski ghosts [G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)].
The action is given by [ d*x\/—g Z?:z L; where

£2 = K(¢7X)7 £3 = _G3(¢7X)D¢7
La= Ga(6. X)R + Gax | (00)° — (V,V0)’|
£ = Ga(6, X) 6 Vv*6 — X [(0g)
—3(0¢) (VuV,0)? +2 (vuvysb)ﬂ

where X = —18,00"¢ and G; x = 9.
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Black hole solutions

Goal : Find static spherically symmetric black hole solutions
within an Ansatz of the form

ds® = —N(r)zF(r)dt2+,g(rr2)+r2 (d6? +sin(0)%dp?), ¢ = (r)

or in isotropic coordinates
ds?> = —H(r)dt>+G(r) [dr2 + r? (d92 + sin(e)zdwz)] , o =o(r)

— Nonlinearities make difficult to find exact analytic solutions.
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S= /d4x\/—g (R — ;amaﬂgé) Gi=1 K=X.

— Most general static solution in isotropic coordinates [s.
Xanthopoulos and T. Zannias, , Phys. Rev. D 40, 2564 (1989).] — Naked singularity
(unless the scalar field vanishes); this result is covered by the
no-hair theorem [u. £ chase, Commun. Math. Phys. 19, 276 (1970)] .

— The clue of the derivation O¢p = 0 — first integral.
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Historical overview of solutions

e Scalar field nonminimally coupled

5= [ a'xvg (R 30,00% - SR~ V(o))
e Belongs to Horndeski theory K = X — V/(¢) and
Gy=1-5¢2

— The parameter £ measures the strength of the nonminimal
gravitational coupling.

— Minimal case £ =0 and V'’ > 0, no scalar-hair theorem [s.o.
Bekenstein, Phys. Rev. Lett 28, 452 (1972).]

— No scalar hair theorem for definite positive potential and for

& < 0 and 5 Z % [A. E. Mayo and J. D. Bekenstein,, Phys. Rev. D 54, 5059 (1996).]
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Historical overview of solutions

— For the conformal coupling £ = % and V = 0, Bocharova,

Bronnikov and Melnikov found a black hole solution [n. Bocharova, k.
Bronnikov and V. Melnikov, Vest. Moks. Univ. Fiz. Astron. 6, 706 (1970).] and [J. D. Bekenstein, Ann.

Phys 82, 535 (1974).

e The BBMB solution is

2 M o dr? 2 102
ds ——(1—7) dt +m+r sz,
M
r—m’
— The metric is like the extremal Reissner-Nordstrom
— Scalar field blows up at the horizon r, = M.
— Uniqueness of the BBMB solution [e. c. xanthopoulos and T. zannias, J.
Math. Phys 32, 1875 (1991).]
— The BBMB has a (very scanty) hair from the dichotomic
parameter + (due to the discrete symmetry ¢ — —¢)

o(r) =+
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Historical overview of solutions

e The clue of the derivation and of the uniqueness theorem of
the BBMB solution is the conformal invariance of the matter
source action

1 1
Su = [ by (~50u00% - ;R?)

— Conformal transformations : g, — ez"gm, and ¢ > e %¢
— Sy — Sy + b.t.

— From the conformal invariance, the trace of the matter
stress tensor vanishes T/ = 0, and from the Einstein equations
Gy = Ty = R =0 (pure geometric constraint) and

O¢ = LR¢ => D¢ = 0 (first integral).

— This permits the derivation of the most general static
spherically symmetric asymptotically flat solution (BBMB) [s.c.

Xanthopoulos and T. Zannias, J. Math. Phys 32, 1875 (1991).].
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2

(D—-2)
R¢2> » fo= a(D—1)

— Conformal transformations : g, — ezagw, and ¢ — e%"qb
— Sy — Sy + bt

— From the conformal invariance, and from the Einstein
equations Gy, = T, => R = 0 (pure geometric constraint)
and 0¢ = EpRp = O¢ = 0 (first integral).

— This permits the derivation of the most general static
spherically symmetric asymptotically flat solution [c. kimcik, J. Math.
Phys 34, 5 (1903).]. Black hole only in D = 4 (BBMB).
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Historical overview of solutions

e Self-interacting conformal scalar field

S = / d*x\/—g (R — 2N — %ama“(p — %R& - a¢4)

— Conformal potential V o ¢*.
— A bIaCk h0|e SOIUtion Wlth /\ > O eXiStS [C. Martinez, R. Troncoso and

J. Zanelli, Phys. Rev. D 67, 024008 (2003).]

a?

f(r)

+ r2d§2§, f(r)= —Ar2 +(1- M)2

ds? = —f(r)dt® + 3 -

M
r—m

provided that oo = —A\/72.
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Historical overview of solutions

— From the Einstein equations G, +Agu, = Ty = R = 4N\
(pure geometric constraint) but

O¢ = %Rgb—l— dap® = O¢ # 0 (no more a first integral).

— The uniqueness of the solution is an open problem.

— From these different examples, one can appreciate that the
solutions can be found analytically in the case where

Pure geometric constraint (due to the conformal invariance
of the scalar field action) and which restricts the allowed
possible spacetimes or/and

Scalar field equation "simple” to integrate.

o We will see a model where these two criteria hold but with a
scalar field action that is not conformally invariant.
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ity - 25 & &

where G = R? — 4R, R + Rﬂya[gR“"aﬁ is the Gauss-Bonnet
density. It belongs to Horndeski theory. Here the
a—contribution breaks the conf. invariance of the matter action
but the scalar field equation is still conformally invariant.

— Look for a solution within the following ansatz

4600, 4D8(06) | 2(a¢>)4} }

d 2
ds? = —f(r)dt® + Sl
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where M (mass) and g (kind of charge) are two integration
constants.

Scalar field equation "easy” to integrate (for « # 0)

<;§;>/<f [(ré)]? — ¢*(1 + £r2¢2)> o

Two disconnected branches of solutions [p. 6. s. Fernandes, Phys. Rev.

D 103, 104065, (2021). |
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First branch :

8 i
= 4o q=—2a, o(r) = ;
Second branch : The scalar field equation
)]~ P+ o) =
by means of the change r¢ = Ah( f ) becomes a

ry/ f(
. dh
separable equation —2L— = +dr
YT

_2a
I v~

4o’ 9 )= rcosh(c £ |

rv f(
where the constant c is a sort of hair (consequence of the
conf. invariance of the scalar field equation).
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Generalized or Non-Noetherian conformal scalar

field

e The clue behind the existence of these solutions : Geometric
constraint is due to the conformal symmetry of the scalar field
equation without necessarily having a conformally invariant

matter source action. — Generalized [p. . s. Ferandes, Phys. Rev. D 103,
104065, (2021).] or Non-Noetherian conformal scalar field [e. aysn-Beato

and M. H, arXiv :2305.09806 [hep-th], (2023).]

— For convenience, let us work in the "exp. frame" ¢ — e?.
— The conformal transformations become g, — e2°'gW and
¢ — ¢ — o or infinitesimally 0,8, = 208, and 6,0 = —0. A
SST with a conformally invariant scalar field equation

oS oS oS oS
505—/<5(, L8y )—/(z V_>a
Sz 78 T 54000 & S 5

¢—independent
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— A scalar quantity /(¢, g) under a conformal transformation
guw — ez"g,w and ¢ — ¢ — o becomes

(¢, 8) = (¢ — 0,%g)
Conformal invariance of the scalar quantity (o = ¢)—
1(¢,8) =1(0,8), auxiliary metric § = *%g

Conclusion : The only conf. inv. quantities of STT are purely
geometric quantities built out of the auxiliary metric (6,8 = 0).
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In our case )
1(0,8) = —8\—-27R—ag

and, by means of an homotopy calculation =

Sy = /d4x\/7—g —2X¢* 613 <§(‘)2 + (e)(->)2>

4G pupy _ 406(0¢)° | 2(99)*
—a|In(¢)g — $? o 3 + 4
® The real challenge is to determine scalar quantities built out of the auxiliary
metric that come from an action principle. In [E. Ayén-Beato and M. H, arXiv :2305.09806
[hep-th], (2023).], we have determined the most general action in four dimensions
that gives rise to a non-Noetherian conformal scalar field satisfying a second-order
equation.
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Model with a "simple” scalar field equation

A priori forget about the symmetry (conformal or shift) and ask
a similar factorization for the scalar field equation for an ansatz
of the form ds? = —f(r)dt? + dr?/f(r) + r?dQ3 and ¢ = ¢(r)

[E Babichev, C. Charmousis, M. H. and N. Lecoeur, [arXiv :2303.04126 [gr»qc]].]

/d“x@{ (1+ W ()R~ %Vk (@) (Vo) +Z () + V (4)G

+V5(9) GV 0V, + V3 (9) (V9)* + Va (6) D6 (Vo)? }

Previous case corresponds

W = —8e%?, Vo =128e*", Z = —2X\e* —2A,
V=—ap, Vo=da=Vy V3=2aq,
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provided that the potentials V) and V; can be parameterized in terms of
the Einstein-Hilbert and Gauss-Bonnet potentials W and V = A priori a
three-parametric (parameterized by W, V and Z) class of possible
"integrable” theories.

One has to fix the potentials W, V and Z s. t. the two remaining equations
admit the same metric function f (in the case of the first branch).
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For the first branch, the two independent equations, &£,, = 0 and
Epo = 0 can be integrated once and twice respectively to give

5,,0(/{(/’), 5990(/5(!’),
with

W) g2r 42w 4 2 - 2,

’

n(ny =7 (2v)" (2 (14 W) +av

b(r)=f (V) —f (1+ W )+2,

where W =W and rZ = Z".
The two quadratic equations defining f must be proportional
with a proportional factor 2u(r).
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and the resulting action is given by

S= /d4x\/g{R — 2A—2Xge*? —2)5¢%% —B4¢%? (R + 6(V¢)?)
—B5e3® (R +12(Vp)?) —as (¢G — 4GH ¢ — 40H(V9)? — 2(V)*)

—ase? (G — 8G" dpudy — 120¢(Vh)? — 12(Vp)*) }

The resulting action is a linear combination of the four-dimensional non
Noetherian conformal action and a Lagrange density that defines a Noetherian
conformal action in five dimensions.
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coordinates (for latter convenience)
? U
ds? = —f (r) du® — 2dudr + 102 +r?6%dy?,  ¢(r) =In (7)
—K r

where kK = +1 or kK = 0 and 7 is a constant.



Einstein equations
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finding black
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Hassaine + - ()\4774 + ,34mn2) -5 + nr) .
oy f? Bsn®  2kasn | 204k L (s | Bsmw
- —\r+—55 -+ R f+ S|\ +——
r 2r r r r 2 2

1 2 5 A
+;(/\4'r/ +ﬁ4n’r])—?+nr+(f1:0.
Evaluating the scalar field ¢(r) in the Einstein equations Egpg,

3 2 Aen® ar? 3A "
Eeo“[%fz_(,_ﬁsig_mi)f_ﬂ_ﬂ_;] ,
r r r
£2 3 2 Asm® dant o rBA
et (Bt B A Mant PN e,
r r2 r 3r2 r 3

where Ci, C; and C3 are constants of integration.
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Compatibility and Black Hole Solution

asf? Bsn® | 2kasn | 204k 1 (xsn® | Bsns
- Psn R +
r (r + 2r2 * r2 * r * r2 2 2
3

1 - A
+- ()\4//4 + B4 K //2) — % +rr+ G =0,
B

f2 3 2 "D A 4 3/\
aaf” _(, Bsn” BanT p Asnt At PAL Lo,
r r2 r 3r2 r 3

Compatibility relations for coupling constants

4 3 1
Bsn® = —305k Ban? = —20uk, Asn? = —5,35& \n? = —554*6
CG=kr 6=G0CG=-2M.

where M is a constant of integration. We obtain the following metric function

2asnk = 4asnk \ 2 A 2M 20y K2 8agnk?
f(r)=r+ A § <1+ > ) +4as | =+ — + + s
3ray 204 3r3 3 r r* 5r5




Particular case Kk = 0

The role of For the case kK = 0, the theory is restricted by Ay = 84 = X\s = 85 =0
symmetry for
finding black

= S= / d‘W—?{R — 2N\ — oy (¢G — 4G ¢, — 40B(V9)? — 2(V)*)
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theories

[thlihr’,‘t _ a56¢ (g —8GH" by — 12|:|¢(V¢)2 _ 12(V¢)4) }7

the metric function and scalar field are given by

f(r) = (1i\/1+4a4 (/3\+2r,;”)>
¢(r) =1n (2)

where M and 7 are constants of integration.
Curiosities :

)

The solution does not depend on the coupling as since the T‘(ff‘f associated
to as vanishes on-shell (it is a stealth only on this part).

The integration constant 7 does not appear in the metric solution, and this
can be explained by the fact that the ay-part is shift symmetric in ¢ i. e.

¢ — ¢+ cst
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Considering 84 = A4 = a4 = 0, and through a redefinition of the scalar field
2
®3 = e?, the theory is given by

1 3
5= /d4x\ﬁg{R 2N —2)s05 — 5 (09 — RO~

(g 32 G o0,  3200(Ve)? 64 (v¢)4)
— Qs - — - — - = .
9 o3 9 o3 27 %

We obtain the following solution

f(r)

_ 1 |: A2 2M  4asnk? i|
T

Here§:%<%

L

ot
|
et
NI—@
8%

No Hair Theorem
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From static to Vaidya-like solutions

Considering the metric function as a function that depends also on the retarded
(advanced) time v,

2 1092
ds? = —f(u, r)du2 — 2dudr + + r292dy2,
1— k62
—mn("
¢(r) =1n (r) R

where 7 is fixed by the compatibility conditions and the equation E, is
automatically satisfied.
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Evaluating the scalar field ¢(r) and the compatibility conditions in the Einstein

equations E,, one gets,

- ayf? dasnk 20uk 4nas k2 agr?
Eu = 8r< B (r + 3r2 r 152
1 A 1 ayf? dasnk 204k
2 (Nt 4 Barn?) = m e ) - Zau [ B - (o T2 R p ),
r 3 f 3r r

1 8U)E5tatic(f(u,l’)),

~ T R

EHG = arrEStatic(f(u’ I‘)),
— EstatiC(,c(u7 r)) = Ci(u)r + 2M(u),
Gu)  G(v) 2M(u)

= Euw = - ;
r2 rf(u,r)  r2f(u,r)

it is easy to see that choosing Ci(u) = 0 leads to the generalized Vaidya relation

2M(u)

Epv = Guv + Agpw — Tpw = — r2 5;‘155:
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Hence, we have shown that the compatibility conditions can be generalized to
accommodate a time dependence by promoting the constant mass to a function of
the retarded (advanced) time = As a consequence, the static black hole
solutions can be naturally promoted to Vaidya type solutions with metric

2asnk 2 4agnk 2 A 2M(u 20y K2 8agnk?
f(u,r):n+i+—<1i¢(1+;73) +4a4<5+g+ + 25
r

3rog 2a r r4 5r5

Let us now define

L1(n) =2e"?, Lo(n) = "¢ [R 4 (n—1)(n - 2)(V)?]

L3(n) ="~ [G — 4(n — 3)(n — 4) GV, ¢V d — 2(n — 2)(n — 3)(n — 4)0H(V)
—(n=2)(n—3)*(n—4)(Ve)*]

where L1(n) (resp. L2(n) and L3(n)) is conformally invariant in any dimension
n> 2 (resp. n >3 and n > 4).
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General case with y constant and 1 # 1

The resulting action for p constant and p # 1

1 2(p—1)
Sut = 5 / d'xv/~g {a {2@ —2) 23 Ly(6 — 2u) + 4D Lo(6 — 2) + ﬁﬂs(ﬁ —2p)
12 4 p + 1)
— — L£1(5) — = L2(5 ——L3(5
v |:(2/,L+3)c5 10) = 54200+ — 3( )}

2 — DA L4 - 2p) + 22V £y(a — 20)).

The metric solution is given by

Fu,r) = 2u171 [1+ a2 + % <1i 1/H(r)>:|

@

with

Her) ( 2+ )2 4ol N 8aM  16ay(2u +1) 802
) = = iy _
r2ut+l 3 r2utl (2 4 3)r2H 3 (2 — 3)r4

As in the 1 = 1 case, its extension to generalized Vaidya-like solution M — M(u) yields

2 M(u) 5U 50

Euv = Guu + Ngpv — Tpp = —m wOous
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Conclusions :

Quite general Horndeski theories with arbitrary ¢—dependent potentials and
without any apparent symmetries which admit interesting and explicit black
hole solutions.

The resulting action turns out to have a conformal origin (non-Noetherian in
four dimension and Noetherian in five dimensions). Understand this origin.
Linear and quadratic black hole solutions which can be promoted to
generalized Vaidya-like configurations M — M(u).

We have completely specified the solutions for a constant factor of
proportionality. What is for u # cst (for example the BBMB solution
corresponds to p # cst).



